Publications

  1. Tandon B, Zuege A, Luposchainsky SF, Dalton PD Effect of Electrode Design on Melt Electrowriting of Sinusoidal Structures, Adv Eng Mater, accepted, https://doi.org/10.1002/adem.202300335.
  2. O’Neill K, Dalton PD (2023) A decade of melt electrowriting, Small Methods, 2201589.
  3. Reizabal A, Kangur T, Saiz PG, Menke S, Moser C, Brugger J, Dalton PD, Luposchainsky S (2023). MEWron: an Open-Source Melt Electrowriting Platform. Additive Manufacturing, 71, 103604.
  4. Saiz PG, Reizabal A, Vilas-Vilela JL, Lanceros-Mendez S, Dalton PD (2023). Thermochromic responses on melt electrowritten poly(ε-caprolactone) microstructures. ACS Appl Polym Mater, 5, 3883–3887
  5. Saiz PG, Reizabal A, Luposchainsky SF, Vilas-Vilela JL, Lanceros-Mendez S, Dalton PD. (2023) Magnetically responsive melt electrowritten structures. Adv Mater Technol,
  6. Reizabal A, Tandon B, Lanceros-Méndez, Dalton PD (2023) Electrohydrodynamic 3D printing of aqueous solutions. Small, 19, 2205255.
  7. Dalton PD, Tandon B, Hutmacher DW (2023) Chapter 11: Scaffold Design and Fabrication, in Tissue Engineering. 3rd Edition, De Boer & Van Blitterswijk, Academic Press. ISBN 9780128244593, pp 355-386.
  8. Dalton PD, O’Neill KL, Pêgo AP, Plant GW, Nisbet DR, Oudega M, Brook GA, Harvey AR (2023) Chapter 17: Tissue Engineering of the Nervous System, in Tissue Engineering. 3rd Edition, De Boer & Van Blitterswijk, Academic Press. ISBN 9780128244593, pp 585-628.
  9. Diaz RS, de Juan-Pardo EM, Dalton PD, Dargaville TR (2022) Semi-Woven Structures via Dual Nozzle Melt Electrowriting. Macromol Mater Eng, 2200526.
  10. Luposchainsky SF, Jörissen S, Nuechter A, Dalton PD (2022) Melt electrowriting of poly(dioxanone) filament using a multi-axis robot. Macromol Mater Eng,
  11. Kade J, Bakirci E, Tandon B, Gorgol D, Mrlik M, Luxenhofer R, Dalton PD. (2022) The impact of including carbonyl iron particles on the melt electrowriting process. Macromol Mater Eng, 307, 2200478.
  12. Janzen D, Bakirci E, Faber J, Hauptstein J, Pal A, Forster L, Hazur J, Boccaccini AR, Detsch R, Teßmar J, Budday S, Blunk T, Dalton PD, Villmann C. (2022) Reinforced Hyaluronic acid-based Matrices promote 3D Neuronal Network Formation. Adv Healthc Mater, 2201826.
  13. Haag H, Sonnleitner S, Lang G, Dalton PD (2022) Melt Electrowriting to produce Microfiber Fragments. Polym Adv Technol, 1-4. doi:10.1002/pat.5641.
  14. Collier E, Maitland B, Sanderson R, Heidari BS, Lamb C, Hepburn M, Dalton PD, Fang Q, De-Juan-Pardo E, Kennedy BF (2022) In Situ Characterization of Melt Electrowritten Scaffolds in Three Dimensions Using Optical Coherence Tomography. Adv Photonics Res, 2100274.
  15. Böhm C, Tandon B, Hrynevich A, Teßmar J, Dalton PD (2022) Processing of poly(lactic-co-glycolic acid) microfibers via melt electrowriting. Macromol Phys Chem, 223, 2100417.
  16. Wieland A, Strissel PL, Schorle H, Bakirci E, Janzen D, Beckmann MW, Eckstein M, Dalton PD, Strick R (2021) Brain and breast cancer cells with PTEN loss of function demonstrate enhanced durotaxis and RHOB dependent amoeboid migration using 3D printed scaffolds and aligned microfiber tracts. Cancers, 13(20), 5144; https://doi.org/10.3390/cancers13205144.
  17. Bakirci E, Frank A, Gumbel S, Otto PF, Fürsattel E, Teßmer I, Schmidt H-W, Dalton PD (2021) Melt electrowriting of amphiphilic physically crosslinked segmented copolymers. Macromol Phys Chem, 222: 2100259.
  18. Böhm C, Stahlhut P, Weichhold J, Hrynevich A, Teßmar J, Dalton PD (2021) The multi-week thermal stability of medical-grade poly(ɛ-caprolactone) during melt electrowriting. Small, 2104193.
  19. Eberle, F, Gruska A-K, Fillipi B, Stahlhut P, Wallace GG, Dalton PD, Beirne S (2021) Hollow-fiber melt electrowriting using a 3D-printed coaxial nozzle. Adv Eng Mater, 2100750.
  20. Fischhaber N, Faber J, Bakirci E, Dalton PD, Budday S, Villmann C, Schaefer N. (2021) Spinal cord neuronal network formation in a 3D printed reinforced matrix – a model system to study disease mechanisms. Adv Healthc Mater,
  21. Achenbach P, Hambeukers I, Pierling AL, Gerardo-Nava JL, Hillerbrand L, Sechi AS, Glücks KJ, Dalton PD, Pich A, Dievernich A, Altinova H, Brook GA (2021) A novel in vitro assay for peripheral nerve-related cell migration that preserves both extracellular matrix-derived molecular cues and nanofiber-derived topography. J Neurosci Meth, 361, 109289.
  22. Kade J, Otto P, Luxenhofer R, Dalton PD (2021) Melt electrowriting of poly(vinylidene difluoride) using a heated collector. Polym Adv Technol, 1- 5. DOI:10.1002/pat.5463
  23. Kade J, Tandon B, Weichhold J,Pisignano D, Persano L, Luxenhofer R, Dalton PD. (2021) Melt electrowriting of poly(vinylidenefluoride-co-trifluoroethylene). Polym Int, DOI:10.1002/pi.6272.
  24. Diaz R-S, Park J-R, Rodrigues LL, Dalton PD, De Juan Pardo E, Dargaville TR. Highly elastic scaffolds produced by melt electrowriting of poly(L-lactide-co-ε-caprolactone). Adv Mater Tech, DOI:10.1002/admt.202100508.
  25. Mieszczanek P, Robinson TM, Dalton PD, Hutmacher DW (2021) Convergence of machine vision and melt electrowriting. Adv Mater, DOI:10.1002/adma.202100519.
  26. Hrynevich A, Achenbach P, Jungst T, Brook GA, Dalton PD (2021) Design of suspended melt electrowritten fibre arrays for Schwann cell migration and neurite outgrowth. Macromol Biosci, 21: 2000439.
  27. Kim J, Bakirci E, O’Neill K, Hrynevich A, Dalton PD (2021). Fiber bridging during melt electrowriting of poly(ε-caprolactone) and the influence of fiber diameter and wall height. Macromol Mater Eng, 306, 2000685.
  28. Bolle ECL, Nicdao D, Dalton PD, Dargaville TR (2021) Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. In: Rainer A., Moroni L. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 2147. Humana, New York, NY.
  29. Nava JLG, Rose JC, Altinova H, Dalton PD, DeLaporte L, Brook GA (2020). Nanofibres and Nanostructured Scaffolds for Nervous System Lesions. In: Nanomedicines for brain drug delivery, Javier O. Morales and Pieter J. Gaillard, Eds., Neuromethods, vol. 157, 61-101.
  30. Mechau J, Frank A, Bakirci E, Gumbel S, Jungst T, Giesa R, Groll J, Dalton PD, Schmidt H-S (2020). Hydrophilic (AB)n segmented copolymers for melt extrusion based additive manufacturing. Macromol Chem Phys, 222, 2000265.
  31. Hrynevich A, Liashenko I, Dalton PD (2020) Accurate prediction of melt electrowritten laydown patterns from simple geometrical considerations. Adv Mater Tech,
  32. Großhaus C, Bakirci E, Berthel M, Hrynevich A, Kade JC, Hochleitner G, Groll J, Dalton PD (2020) Melt electrospinning nanofibers from medical-grade poly(ε-caprolactone) with a modified nozzle, Small, 2003471.
  33. Kade J, Dalton PD (2020) Polymers for melt electrowriting, Adv Healthc Mater,
  34. Mridha AR, Dargaville TR, Dalton PD, Carroll L, Morris M, Gamble J, Vaithilingam V, Touch B. Prevascularized retrievable hybrid implant to enhance function of subcutaneous encapsulated islets. Tissue Eng, DOI: 10.1089/ten.tea.2020-0179.
  35. Bakirci E, Schaefer N, Dahri O, Hrynevich A, Strissel P, Strick R, Dalton PD, Villmann C (2020) Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration. Adv Biosys, 2000077.
  36. Liashenko I, Hrynevich A, Dalton PD (2020) Designing outside the box: Unlocking the geometric freedom of melt electrowriting using microscale layer shifting. Adv Mater, 32, 2001874.
  37. Dalton PD, Woodfield TBF, Mironov V, Groll J (2020). Advances in hybrid fabrication towards hierarchical tissue constructs. Adv Sci, 7, 1902953.
  38. Janzen D, Bakirci E, Weiland A, Martin C, Dalton PD, Villmann C (2020) Cortical neurons form a functional neuronal network in a 3D printed reinforced matrix. Adv Healthc Mater, 9,
  39. Tylek T, Blum C, Hrynevich A, Schlegelmilch K, Schilling T, Dalton PD, Groll J. (2020) Precisely defined fiber scaffolds with 40 µm porosity induce elongation driven M2-like polarization of human macrophages. Biofabrication, 12, 025007.
  40. Nahm D, Weigl F, Schaefer N, Sancho A, Frank A, Groll J, Villmann C, Schmidt H-W, Dalton PD, Luxenhofer R. (2020) A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels. Mater Horiz, 7, 928-933.
  41. Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F, Dalton PD, Blunk T, Flynn LE, Groll J. (2019) Extracellular matrix-modified fiber scaffolds as a pro-adipogenic mesenchymal stromal cell delivery platform. ACS Biomater Sci Eng, 5, 6655-6666.
  42. Youssef A, Hrynevich A, Fladeland L, Balles A, Groll J, Dalton PD, Zabler S (2019). The Impact of Melt Electrowritten Scaffold Design on Porosity Determined by X-ray Micro-tomography. Tissue Eng Part C, 25, 367–378.
  43. Robinson TM, Hutmacher DW, Dalton PD.(2019) The Next Frontier in Melt Electrospinning: Taming the Jet. Adv Funct Mater, 29, 1904664.
  44. Bertlein S, Hochleitner G, Schmitz M, Teßmar J, Raghunath M, Dalton PD, Groll J. (2019) Permanent hydrophilization and generic bioactivation of melt electrowritten scaffolds. Adv Healthcare Mater, 8, 1801544.
  45. Kotz F, Risch P, Arnold K, Sevim S, Luis JP, Quick A, Thiel M, Hrynevich A, Dalton PD, Helmer D, Rapp BE (2019) Sacrificial Template Replication: Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nat Comm, 10, 1439.
  46. McMaster R, Höfner C, Hrynevich A, Blum C, Wiesner M, Wittmann K, Dargaville TR, Bauer-Kreisel P, Groll J, Dalton PD, Blunk T (2019). Tailored Melt Electrowritten Scaffolds for Multicellular Spheroid Culture. Adv Healthc Mater, 8, 1801326.
  47. Schäfer N, Jansen D, Bakirci E, Hrynevich A, Dalton PD, Villmann CV (2019) 3D electrophysiological measurements on cells embedded within fiber-reinforced Matrigel. Adv Healthcare Mater, 8, 1801226.
  48. Wunner FM, Bas O, Eggert S, Mieszczanek P, Maartens J, Dalton PD, Pardo EM, Hutmacher DW (2019) Printomics: The high-throughput parametric analysis of printing conditions applied to melt electrowritten medical grade poly(ε-caprolactone). Biofabrication, 11, 025004.
  49. Florczak S, Lorson T, Zheng T, Mrlik M, Hutmacher DW, Higgins M, Luxenhofer R, Dalton PD (2019) Melt electrowriting of electroactive poly(vinylidene difluoride). Polym Int, 68, 735–745.
  50. Fuchs A, Youssef A, Seher A, Hochleitner G, Dalton PD, Hartmann S, Brands R, Müller-Richter U, Linz C (2019) Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro. BMC Oral Health, 19, 28.
  51. Wunner FM, Eggert S, Maartens J, Bas O, Dalton PD, Pardo EM, Hutmacher DW (2019) Design and Development of a 3D Printing High-Throughput Melt Electrospinning Writing Technology Platform. 3D Print Addit Manuf, 6, 82-90.
  52. McColl E, Groll J, Jungst T, Dalton PD (2018) Design and fabrication of melt electrowritten tubes using intuitive software. Materials and Design, 155, 46-58.
  53. Hochleitner G, Chen F, Blum C, Dalton PD, Amsden B, Groll J. (2018) Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater, 72, 110-120.
  54. Hrynevich A, Şen Elçi B, Haigh JN, McMaster R, Youssef A, Blum C, Blunk T, Hochleitner G, Groll J, Dalton PD (2018) Dimension-based design of melt electrowritten scaffolds. Small, 14, 1800232.
  55. Petcu E, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. (2018) 3D printing strategies for peripheral nerve regeneration. Biofabrication, 10, 032001.
  56. Wunner FM, Wille M-L, Noonan TG, Bas O, Dalton PD, Pardo EM, Hutmacher DW (2018) Melt electrospinning writing of highly ordered, large volume, scaffold architectures. Adv Mater,
  57. Hochleitner G, Fürsattel E, Giesa R, Groll J, Schmidt H-S, Dalton PD (2018) Melt electrowriting of thermoplastic elastomers. Macromol Rapid Comm, 39, 1800055.
  58. Castilho M, Hochleitner G, Wilson W, van Rietbergen B, Dalton PD, Groll J, Malda J, Ito K (2018) Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Sci Rep, 8, 1245.
  59. de Ruijter M, Hrynevich A, Haigh JN, Hochleitner G, Castilho M, Groll J, Malda J, Dalton PD (2018) Out-of-plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites. Small, 14, 1702773.
  60. Wang S, Dalton PD, Dargaville TR (2018) Spatial Patterning of Hydrogels via 3D Covalent Transfer Stamping from a Fugitive Ink. Macromol Rapid Comm, 39, 1700564.
  61. Wunner FM, Onur B, Saidy, NT, Dalton PD, Pardo EM, Hutmacher DW (2017) Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. J Vis Exp, 130,
  62. Dalton PD (2017) Melt Electrowriting with Additive Manufacturing Principles. Curr Opin Biomed Eng, 2, 49–57.
  63. Lühmann TC., Meinel L, Groll J, Dalton PD (2017) Electrospun Fibers for Drug Delivery. In: Comprehensive Biomaterials II. Ducheyne P, Grainger DW, Healy KE, Hutmacher DW, and Kirkpatrick, C.J. (Eds), Oxford: Elsevier. Vol. 4, 527–548.
  64. Haigh JN, Dargaville TD, Dalton PD. (2017) Additive Manufacturing with Polypropylene Microfibers. Mat Sci Eng C, 77, 883–887.
  65. Muerza-Cascante ML, Shokoomand A, Khosrotehrani K, Haylock D, Dalton PD, Hutmacher DW, Lössner D. (2017) Endosteal-like extracellular matrix expression on melt electrospun written scaffolds, Acta Biomater, 52, 145-158.
  66. Martine L, Holzapfel BM, Wagner F, Quent VM, Hesami P, Wunner FM, Vaquette C, Juan Pardo E, Brown TD, Nowlan B, L Lévesque JP, Dalton PD, Taubenberger AV, Hutmacher DW (2017) Engineering a humanized bone organ in mice to study bone-related malignancies. Nat Protoc, 12, 639-663.
  67. Youssef A, Hollister S, Dalton PD. (2017) Additive manufacturing of polymer melts for implantable devices and scaffolds. Biofabrication, 9, 012002.
  68. Hochleitner G, Youssef A, Hrynevich A, Haigh J, Jüngst T, Groll J, Dalton PD (2016) Fibre Pulsing During Melt Electrospinning Writing. Bionanomaterials, 17, 159–171.
  69. Brown TD, Dalton PD, Hutmacher DW (2016) Melt Electrospinning Today- An Opportune Time for an Emerging Polymer Process. Prog Polym Sci, 56, 116–166.
  70. Weigand A, Boos AM, Tasbihi K, Beier JP, Dalton PD, Schrauder M, Horch RE, Beckmann MW, Strissel PL, Strick R. (2016) Selective isolation and characterization of primary cells from control breast and tumors reveal plasticity of adipose derived stem cells. Breast Cancer Res Treat, 18:32.
  71. Chen F; Hochleitner G, Woodfield T, Groll J, Dalton PD, Amsden B (2016) Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Biomacromolecules, 17, 208–214.
  72. Groll J, Boland T, Burdick J, Blunk T, Choo D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: Reappraising the definition in an evolving field. Biofabrication, 8, 013001.
  73. Haigh JN, Chuang Y-M, Farrugia B, Hoogenboom R, Dalton PD, Dargaville TR. (2016) Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. Macromol Rapid Comm, 37, 93–99.
  74. Führmann T, Mousumi G, Otero A, Goss B, Dargaville TR, Pearse DD, Dalton PD. (2015) Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neurosci Lett, 602, 126–132.
  75. Hochleitner G, Jüngst T, Brown TD, Hahn K, Moseke C, Dalton PD, Groll J (2015) Additive Manufacturing with Sub-Micron Melt Electrospun Filaments. 7, 035002.
  76. Jüngst T, Muerza-Cascante ML, Brown TD, Standfest M, Hutmacher DW, Groll J, Dalton PD. (2015) Melt Electrospinning onto Cylinders: Effects of Rotational Velocity and Collector Diameter on the Morphology of Tubular Structures. Polym Int, 64, 1086–1095.
  77. Visser J, Melchels FPW, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J. (2015) Strengthening hydrogels using three-dimensionally printed microfibers. Nat Comm, 6, 6933.
  78. Dalton PD, Muerza-Cascante ML, Hutmacher DW. (2015) Tissue Engineering Scaffold Design and Fabrication via Melt Electrospinning. In Electrospinning: Principles, Practice and Possibilities. GR Mitchell, RCS Publishing, ISBN: 978-1-84973-556-8, pp 100-120.
  79. Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD. (2015) Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Eng B Rev. 21, 187-202.
  80. Dalton PD, Harvey AR, Oudega M, Plant GW (2015) Chapter 17: Tissue Engineering of the Nervous System, in Tissue Engineering. 2nd Edition, De Boer & Van Blitterswijk, Academic Press. ISBN 9780124201453, pp 583-625.
  81. Hutmacher DW, Woodfield T, Dalton PD (2015) Chapter 10: Scaffold Design and Fabrication. In Tissue Engineering. 2nd Edition, De Boer & Van Blitterswijk, Academic Press. ISBN 9780124201453, pp 311-346.
  82. Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD. (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C, 45, 698–708.
  83. Thibaudeau L, Taubenberger AV, Holzapfel BM, Quent VM, Führmann T, Hesami P, Brown TD, Dalton PD, Power CA, Hollier B, Hutmacher DW. (2014) A tissue engineered humanized xenograft model of human breast cancer metastasis to bone, Dis Mod Mech, 7, 299–309.
  84. Li HY, Führmann T, Zhou Y, Dalton PD. (2013) Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. J Mat Sci Mater Med, 24, 2001-2011.
  85. Volpatto F, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD. (2013) Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 34, 4945-55.
  86. Farrugia B, Brown TD, Hutmacher DW, Upton Z, Dalton PD, Dargaville TR. (2013) Dermal fibroblast infiltration of poly(ε–caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication, 5,
  87. Shulte VA, Alves DF, Dalton PD, Möller M, Lensen MC, Mela P (2013) Microengineered PEG hydrogels: 3D scaffolds for guided cell growth, Macromol Biosci, 13, 562–572.
  88. Dalton PD, Vaquette C, Farrugia B, Dargaville TR, Brown TD, Hutmacher DW. (2013) Electrospinning and Additive manufacturing: converging technologies. Biomater Sci, 1, 171.
  89. Garland P, Broom LJ, Quraishe S, Dalton PD, Newman TA, Perry VH. (2012) Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS ONE, 7, e47552.
  90. Brown TD, Vaquette C, Hutmacher DW, Dalton PD (2012) Electrospinning for Regenerative Medicine. In Dumitriu, S. and Popa, V. (Eds.), Polymeric Biomaterials: Structure and Function, 1, pp 539-592. Boca Raton, FL: CRC Press.
  91. Brown TD, Slotosch A, Thibaudeau L, Taubenberger A, Lössner D, Vaquette C, Dalton PD, Hutmacher DW. (2012) Design and fabrication of tubular scaffolds by direct writing in a melt electrospinning mode. Biointerphases, 7, 13.
  92. Brown TD, Dalton PD, Hutmacher DW. (2011) Direct Writing by Way of Melt Electrospinning. Adv Mater, 23, 5651-57.
  93. Cui W, Chang J, Dalton PD (2011) Electrospun Fibers for Drug Delivery. In Ducheyne, K.E. Healy, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick (eds.). Comprehensive Biomaterials vol. 4, pp. 445-462 Elsevier.
  94. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. (2011) Design, Fabrication and Characterization of PCL Electrospun Scaffolds – A Review. J Mater Chem. 21, 9419-9453.
  95. Hutmacher DW & Dalton PD (2011) Melt Electrospinning. Chem Asian J, 6, 44-56.
  96. Detta N, Brown T, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW (2010) Melt electrospinning of poly(ε-caprolactone) and its blends with poly(ethylene glycol). Polym Int, 59, 1558-62.
  97. Grafahrend D, Heffels K-H, Beer M, Gasteier P, Möller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater, 10, 67-73.
  98. Johnston AH, Dalton PD, Newman TA (2010) Polymersomes, smaller thank you think: ferrocene as a TEM probe to determine core structure. J Nanopart Res, 12, 1997–2001.
  99. Dalton PD, Woodfield T, Hutmacher DW (2009) Snapshot: Polymer scaffolds for tissue engineering. Biomaterials, 30, 701-702.
  100. Klinkhammer K, Seiler N, Grafahrend D, Gerardo Nava J, Mey J, Brook GA, Möller M, Dalton PD, Klee D (2009) Deposition of electrospun fibers on reactive substrates for in vitro Tissue Eng Part C, 15, 77-85.
  101. Gerardo Nava J, Klinkhammer K, Seiler N, Mey J, Klee D, Möller M, Dalton PD, Brook GA (2009) Neural and glial interactions with electrospun nanofibers in vitro. Nanomedicine, 4, 11-30.
  102. Dalton PD & Mey J (2009) Neural interactions with materials. Front Biosci, 14, 769-795.
  103. Dalton PD, Jörgensen N, Groll J, Möller M (2008) Patterning of melt electrospun substrates for tissue engineering. Biomed Mater, 3, 034139.
  104. Dalton PD, Hostert C, Albrecht K, Möller M, Groll J (2008) Structure and properties of urea crosslinked star poly(ethylene glycol-ran-propylene oxide) hydrogels. Macromol Biosci, 8, 923-
  105. Grafahrend D, Lleixa Calvet J, Klinkhammer K, Salber J, Dalton PD, Möller M, Klee D (2008) Control of protein adsorption on functionalized electrospun fibers. Biotech Bioeng, 101, 609-621.
  106. Anderson M, Johnston AH, Newman TA, Dalton PD, Rask-Andersen H (2008) Internalization of nanoparticles into spiral ganglion cells. J Nanoneurosci, 1, 1-10.
  107. Hutmacher DW, Woodfield T, Dalton PD, Lewis JA (2008) Scaffold Design and Fabrication in Tissue Engineering. J De Boer, C Van Blitterswijk, P Thomsen, A Lindahl, J Hubbell, D Williams, R Cancedda, J de Bruijn and J Sohier (Ed.) Academic Press. p403-450.
  108. Dalton PD, Harvey AR, Oudega M, Plant GW (2008) Tissue Engineering of the Nervous System, in Tissue Engineering. J De Boer, C Van Blitterswijk, P Thomsen, A Lindahl, J Hubbell, D Williams, R Cancedda, J de Bruijn and J Sohier (Ed.) Academic Press. p611-647.
  109. Grafahrend D, Lleixa Calvet J, Salber J, Dalton PD, Möller M, Klee D (2008) Biofunctionalised nanofibers based on resorbable poly(ethylene glycol)-b-polyesters for tissue engineering. J Mater Sci Mater Med, 19, 1479-1484.
  110. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton PD, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly(ε-caprolactone) and a collagen/poly(ε-caprolactone) blend. Biomaterials, 28, 3012-3025.
  111. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer, 48, 6823-6833.
  112. Schäfer K, Thomas H, Dalton PD, Möller M (2007) Nanofibres for filter materials in Multifunctional Barriers for Flexible Materials, S Duquesne, C Magniez & G Camino (Eds.) Springer-Verlag, Heidelberg, Vol 97, Chapter 7, 125-138.
  113. Dalton PD, Calvet J-L, Mourran A, Klee D, Möller M (2006) Melt Electrospinning of poly(ethylene oxide-block-ε-caprolactone). Biotechnol J, 1, 998-1006.
  114. Tsai E, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transaction. Biomaterials, 27, 519-533.
  115. Dalton PD, Klinkhammer K, Salber J, Klee D, Möller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromol, 7, 686-690.
  116. Dalton PD, Klee D, Möller M (2005) Electrospinning with dual collection rings. Polymer, 46, 611-614.
  117. Tsai E, Dalton PD, Shoichet MS, Tator CH (2004) Synthetic guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma, 21, 789-804.
  118. Midha, R, Munroe CA, Dalton PD, Shoichet MS, Tator CH (2003) Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg, 99, 555-565.
  119. Flynn L, Dalton PD, Shoichet MS (2003) Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials, 23, 4265-4272.
  120. Karp, JM, Dalton PD, Shoichet MS: “Scaffolds for Tissue Engineering” MRS Bulletin on Cellular Solids, 28: 301-306, 2003.
  121. Dalton PD, Flynn L, Shoichet MS (2002) Manufacture of poly (2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomeaterials, 23, 3843-3851.
  122. Luo Y, Dalton PD, Shoichet MS (2001) Novel poly(HEMA-MMA) hydrogel hollow fiber membranes: morphology and properties. Chem Mater, 13, 4087-4093.
  123. Dalton PD, Vijayasekaran S, Shoichet MS: Processing of Polymer Scaffolds: Polymerization. In Methods of Tissue Engineering, Academic Press, San Diego, CA, 725-731, 2001.
  124. Dalton PD, Shoichet MS (2001) Creating porous tubes by centrifugal forces for soft tissue applications. Biomaterials, 21, 2661-2669.
  125. Midha R, Shoichet MS, Dalton PD, Cao X, Munro CA, Noble J, Wong MKK (2001) Tissue engineered alternatives to nerve transplantation for repair of peripheral nervous system injuries. Transplant Proc, 33, 612-615.
  126. Lou X, Dalton PD, Chirila TV (2000) Hydrophilic sponges based on 2-hydroxyethyl methacrylate. VII. Modification of sponge characteristics by changes in reactivity and hydrophilicity of crosslinking agents. J Mater Sci Mater Med, 11, 319-325.
  127. Hicks CR, Crawford G, Chirila TV, Wiffen S, Vijayasekaran S, Lou X, Fitton JH, Maley M, Clayton AB, Dalton PD, Platten S, Ziegelaar B, Hong Y, Russo A, Constable IJ (2000) Development and clinical assessment of an artificial cornea. Prog Retin Eye Res, 19, 149-170.
  128. Chirila TV, Higgins B, Dalton PD (1998) The effect of synthesis conditions on the properties of poly(2-hydroxyethyl methacrylate) sponges. Cell Polym, 17, 141-162.
  129. Chirila TV, Hicks CR, Dalton PD, Vijayasekaran S, Lou X, Hong Y, Clayton AB, Ziegelaar BW, Fitton JH, Platten S, Crawford G, Constable IJ (1998) Artificial cornea. Prog Polym Sci, 23, 447-473.
  130. Chirila TV, Hong Y, Dalton PD, Constable IJ, Refojo MF (1998) The use of hydrophilic polymers as artificial vitreous. Prog Polym Sci, 23, 475-508.
  131. Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD (1998) Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Mater Sci Mater Med, 39, 650-659.
  132. Hicks CR, Chirila TV, Clayton AB, Fitton H, Vijayasekaran S, Dalton PD, Lou X, Platten S, Ziegelaar BW, Hong Y, Crawford GJ, Constable IJ (1998) Clinical results of implantation of the Chirila keratoprosthesis in rabbits. Br J Ophthalmol, 82, 18-25.
  133. Clayton AB, Chirila TV, Dalton PD (1997) Hydrophilic sponges based on 2-hydroxyethyl methacrylate. III. Effect of incorporating a hydrophilic crosslinking agent on the equilibrium water content and pore structure. Polym Int, 42, 45-56.
  134. Hicks CR, Chirila TV, Dalton PD, Clayton AB, Vijayasekaran S, Crawford GJ, Constable IJ (1996) Keratoprosthesis: preliminary results of an artificial corneal button as a full-thickness implant in the rabbit model. Aust NZ J Ophthalmol, 24, 297-303.
  135. Chirila TV, Hong Y, Dalton PD, Artificial Vitreous Body in The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, J.C. Salamone (Ed.), CRC Press, Boca Raton, FL, 8619-26, 1996.
  136. Crawford GJ, Chirila TV, Vijayasekaran S, Dalton PD, Constable IJ (1996) Preliminary evaluation of a hydrogel core-and-skirt keratoprosthesis in the rabbit cornea. J Refract Surg, 12, 525-529.
  137. Hong Y, Chirila TV, Vijayasekaran S, Dalton PD, Tahija SG, Cuypers MJH, Constable IJ (1996) Crosslinked poly(1-vinyl-2-pyrrolidinone) as a vitreous substitute. J Biomed Mater Res, 30, 441-448.
  138. Vijayasekaran S, Chirila TV, Hong Y, Tahija S, Dalton PD, Constable IJ, McAllister I (1996) Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: Histopathological evaluation in the animal eye, J Biomater Sci Polym Ed., 7, 685-696.
  139. Dalton PD, Jefferson A, Hong Y, Chirila TV, Vijayasekaran S, Tahija S (1995) Fourier transform infrared spectrometry as a tool to assess the retention of polymeric vitreous substitutes. Bio-Med Mater Eng, 5, 185-193.
  140. Dalton PD, Chirila TV, Hong Y, Jefferson A (1995) Oscillatory shear experiments as criteria for potential vitreous substitutes. Polym Gels & Netw, 3, 429-444.
  141. Chirila TV, Constable IJ, Hong Y, Vijayasekaran S, Humphrey M, Dalton PD, Tahija SG, Maley ML, Cuypers MH, Sharp C, Moore SR, Vague MJ (1995) Synthetic hydrogel as an artificial vitreous body – A one year animal study of its effects on the retina. Cell Mater, 5, 83-96.
  142. Chirila TV, Vijayasekaran S, Horne R, Chen Y-C, Dalton PD, Constable IJ, and Crawford GJ (1994) Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea. J Biomed Mater Res, 28, 745-753.